游走在晚清的乱世理工男 第454节(1 / 4)

投票推荐 加入书签 留言反馈

  而宇宙的年龄只有138亿年,大约只等于10的17次方秒。
  所以真的诗歌很难想象的庞大数字。
  不过这就是数学,物理上不可能的事情,不代表数学上不可能。
  从博弈论的角度看,所有的对弈游戏,最优解一定存在。
  但至于怎么证明,当然不能穷举,只能用数学技巧。
  希尔伯特考虑了一会儿说:“有意思!我喜欢这个猜想,不过关于博弈论,我并不是哥廷根大学里最好的,有个叫做策梅洛的年轻教授,对博弈论简直是痴迷。”
  希尔伯特看人很准,李谕刚才说的那个猜想,其实就是策梅洛定理。
  其实李谕脑子里想的是博弈论中关于均衡的定理,即后世著名的纳什均衡,策梅洛定理是其一个特例。
  有了策梅洛定理的证明,对纳什均衡证明会有很大帮助。
  李谕说:“还请希尔伯特教授帮忙引见。”
  “可以,但今天他恐怕抽不开身,因为明天会有两拨人进行集合论的数学研讨。策梅洛作为集合论的重要支持者,会与对方进行辩论,”希尔伯特说,“你明天要不要也去凑凑热闹?”
  “当然想,”李谕说,“我是集合论的拥趸。”
  “好的,有你力量更大了,”希尔伯特说,“不过对方来的人不少,我要找上我的好朋友一起去帮策梅洛站台。”
  李谕问道:“您是指闵可夫斯基教授?”
  “没错,他正好在上课,我们去看看讲完了没有。”希尔伯特说。
  目前欧洲的大学,上课时间比较随意,经常跨越中午。
  来到闵可夫斯基的教室外,希尔伯特发现他不停地在黑板上演算着。
  希尔伯特掏出手表,对身旁的助手玻恩说:“已经快要下课,但看起来他一点没有要停下的意思,闵可夫斯基教授今天莫非还在研究四色问题?”
  玻恩说:“是的,教授先生,如果我没有记错,他已经连续讲了四个星期,但还没有完成证明。”
  李谕愕然,问道:“闵可夫斯基教授想在课堂上证明四色定理?!”
  “对啊,”希尔伯特说,“四个星期前,他在讲授拓扑学时,碰巧提到了四色问题。”
  李谕问道:“拓扑学讲到四色问题很正常,但该不会闵可夫斯基教授立刻就要去证明吧,还是在课堂上?”
  希尔伯特说:“你已经看到了,他演算的就是四色问题的证明。”
  四色问题形容起来很简单:任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
  它与哥德巴赫猜想、费马猜想并称三大数学猜想。
  但直到1976年,才由数学家用计算机完成了四色定理的证明。
  严格讲,是通过穷举法完成了证明。
  从数学家的角度看,证明方法不太漂亮、不太数学,所以受到了很多数学家的异议。
  希尔伯特说:“当时闵可夫斯基在课堂上对学生们宣称,‘这条定理没有得到证明,是因为到现在为止,只有一些三流的数学家对它进行过专门研究,’然后他对学生们自信地说,‘我相信我能够证明它!’但当天的课程,他显然没有完成,于是之后的四个星期都在进行证明。”
  李谕看向一黑板的算式,说:“似乎并不顺利。” ↑返回顶部↑

章节目录