游走在晚清的乱世理工男 第587节(3 / 4)
索末菲说:“非常感谢。”
在玻尔提出能级轨道理论后,卢瑟福是欧洲最快进行正面评价的大物理学家,接着就是索末菲。
大体看过后,索末菲知道了什么情况:“我早就说过,玻尔的模型看起来很有道理,但我相信需要以更基本的方式重新诠释这一模型。果然没多久,斯塔克就发现了谱线分裂的情况。”
玻尔提出能级理论最初是想要解释氢原子的光谱。
现在斯塔克突然说以前大家以为的谱线压根不是一条条的,每一条其实是由两条组成,只不过它们挨得太近,过去人们一直以为是一条。
玻尔说:“事情发展得太快,但我认为能级理论不至于全盘皆错。”
索末菲问:“你们有没有理出什么头绪。”
玻尔说:“暂时还没有,但李谕先生有一些比较惊奇的猜想。”
于是索末菲问道:“李谕先生,您是怎么想的?”
李谕仍旧稍微收着思绪说:“在玻尔的原子模型中,电子以圆形轨道围绕原子核旋转,我在想,电子能不能绕原子核做其他类型的运动?”
索末菲眉毛一挑:“椭圆?我刚才还在想这个可能性。”
李谕接着说:“而且,玻尔先生的论文中似乎没有考虑相对论效应。”
索末菲眯眼想了好半天,然后说:“很棒的思路!只是或许要用到麻烦的数学推导。”
李谕说:“教授您的数学功底优秀,而且我们这里还有专门从哥廷根过来的数学家。”
索末菲一开始就是研究数学的。
外尔说:“我还没有对量子理论深入研究到诸位的程度,如果只是帮着做点数学校核,应该可以胜任。”
“真遗憾,”索末菲说,“看来只能李谕先生帮忙了。”
李谕说:“尽力而为。”
随后的几天,李谕大部分时间都是与索末菲一同进行理论研究和数学推导,有了一定结果就会在研讨会上与大家一起讨论。
他们很快就计算发现,如果电子在椭圆轨道上绕原子核旋转,其速度将不同于在圆形轨道上的电子。
如果再考虑电子运动的相对论效应,那么椭圆轨道与圆周轨道之间的能量差很小,而这个能量差似乎正好对应两条谱线的能量差。
索末菲已经思考这个问题很久,顺势引入了新的量子数,准确说是三个:轨道方向量子数、轨道形状量子数、自选方向量子数。
更通俗的理解就是量化了轨道的形状。
除此以外,算着算着,索末菲算出了一个奇怪的东西,他立刻叫来李谕:“我似乎发现了一个蹊跷的东西,你看!”
李谕只扫了一眼其中的“1/136”就知道是什么:“精细结构常数。”
“精细结构常数?”
索末菲一愣,转念一想,李谕在《分形与混沌》中就写到过“精细结构”这个词语,用一下似乎没什么不妥。而且他们研究的分裂谱线,正是氢原子光谱的精细结构。
“我赞同这个名字,”索末菲说,“非常神奇的是,它竟然没有量纲,也就是个没有单位的纯数字,这该如何解释?”
索末菲的问题问住李谕了。
在此后经过更加细致的计算后,精细结构常数约等于1/137。 ↑返回顶部↑
在玻尔提出能级轨道理论后,卢瑟福是欧洲最快进行正面评价的大物理学家,接着就是索末菲。
大体看过后,索末菲知道了什么情况:“我早就说过,玻尔的模型看起来很有道理,但我相信需要以更基本的方式重新诠释这一模型。果然没多久,斯塔克就发现了谱线分裂的情况。”
玻尔提出能级理论最初是想要解释氢原子的光谱。
现在斯塔克突然说以前大家以为的谱线压根不是一条条的,每一条其实是由两条组成,只不过它们挨得太近,过去人们一直以为是一条。
玻尔说:“事情发展得太快,但我认为能级理论不至于全盘皆错。”
索末菲问:“你们有没有理出什么头绪。”
玻尔说:“暂时还没有,但李谕先生有一些比较惊奇的猜想。”
于是索末菲问道:“李谕先生,您是怎么想的?”
李谕仍旧稍微收着思绪说:“在玻尔的原子模型中,电子以圆形轨道围绕原子核旋转,我在想,电子能不能绕原子核做其他类型的运动?”
索末菲眉毛一挑:“椭圆?我刚才还在想这个可能性。”
李谕接着说:“而且,玻尔先生的论文中似乎没有考虑相对论效应。”
索末菲眯眼想了好半天,然后说:“很棒的思路!只是或许要用到麻烦的数学推导。”
李谕说:“教授您的数学功底优秀,而且我们这里还有专门从哥廷根过来的数学家。”
索末菲一开始就是研究数学的。
外尔说:“我还没有对量子理论深入研究到诸位的程度,如果只是帮着做点数学校核,应该可以胜任。”
“真遗憾,”索末菲说,“看来只能李谕先生帮忙了。”
李谕说:“尽力而为。”
随后的几天,李谕大部分时间都是与索末菲一同进行理论研究和数学推导,有了一定结果就会在研讨会上与大家一起讨论。
他们很快就计算发现,如果电子在椭圆轨道上绕原子核旋转,其速度将不同于在圆形轨道上的电子。
如果再考虑电子运动的相对论效应,那么椭圆轨道与圆周轨道之间的能量差很小,而这个能量差似乎正好对应两条谱线的能量差。
索末菲已经思考这个问题很久,顺势引入了新的量子数,准确说是三个:轨道方向量子数、轨道形状量子数、自选方向量子数。
更通俗的理解就是量化了轨道的形状。
除此以外,算着算着,索末菲算出了一个奇怪的东西,他立刻叫来李谕:“我似乎发现了一个蹊跷的东西,你看!”
李谕只扫了一眼其中的“1/136”就知道是什么:“精细结构常数。”
“精细结构常数?”
索末菲一愣,转念一想,李谕在《分形与混沌》中就写到过“精细结构”这个词语,用一下似乎没什么不妥。而且他们研究的分裂谱线,正是氢原子光谱的精细结构。
“我赞同这个名字,”索末菲说,“非常神奇的是,它竟然没有量纲,也就是个没有单位的纯数字,这该如何解释?”
索末菲的问题问住李谕了。
在此后经过更加细致的计算后,精细结构常数约等于1/137。 ↑返回顶部↑